考虑到安全至关重要自动化系统中情境意识的功能,对驾驶场景的风险及其解释性的感知对于自主和合作驾驶特别重要。为了实现这一目标,本文提出了在驾驶场景中的共同风险定位的新研究方向及其作为自然语言描述的风险解释。由于缺乏标准基准,我们收集了一个大规模数据集,戏剧性(带有字幕模块的驾驶风险评估机制),该数据集由17,785个在日本东京收集的互动驾驶场景组成。我们的戏剧数据集适用于带有相关重要对象的驾驶风险的视频和对象级别的问题,以实现视觉字幕的目标,作为一种自由形式的语言描述,利用封闭式和开放式响应用于多层次问题,可以用来使用这些响应,可用于在驾驶场景中评估一系列视觉字幕功能。我们将这些数据提供给社区以进行进一步研究。使用戏剧,我们探索了在互动驾驶场景中的联合风险定位和字幕的多个方面。特别是,我们基准了各种多任务预测架构,并提供了关节风险定位和风险字幕的详细分析。数据集可在https://usa.honda-ri.com/drama上获得
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
预计未来几十年的全球粮食不安全将加速气候变化率和人口迅速增加。在这种静脉中,重要的是在每种饮食生产水平上消除效率低下。最近深入学习的进步可以帮助降低这种效率低下,但他们的申请尚未成为整个行业的主流,以大规模的规模诱导经济成本。为此,已将现代技术(如CNNS(卷积神经网络)应用于RPQD(原始产生质量检测)任务。另一方面,变压器在其他方式中的视野中的成功首次亮相使我们能够在RPQD中预计这些基于变压器的模型更好的性能。在这项工作中,我们专门调查了最近的最先进的水流(移位的Windows)变压器,这些变压器可以在窗口和窗口间的方式中计算自我关注。我们将Swin变压器与CNN模型进行比较四个RPQD图像数据集,每个CNN模型都包含不同种类的生成:水果和蔬菜,鱼类,猪肉和牛肉。我们观察到Swin Transformer不仅实现了更好或更有竞争力的性能,而且还具有数据和计算效率,使其成为现实世界的实际部署的理想选择。据我们所知,这是第一个对RPQD任务的大规模实证研究,我们希望在未来的作品中更加关注。
translated by 谷歌翻译
Many recent works on understanding deep learning try to quantify how much individual data instances influence the optimization and generalization of a model, either by analyzing the behavior of the model during training or by measuring the performance gap of the model when the instance is removed from the dataset. Such approaches reveal characteristics and importance of individual instances, which may provide useful information in diagnosing and improving deep learning. However, most of the existing works on data valuation require actual training of a model, which often demands high-computational cost. In this paper, we provide a training-free data valuation score, called complexity-gap score, which is a data-centric score to quantify the influence of individual instances in generalization of two-layer overparameterized neural networks. The proposed score can quantify irregularity of the instances and measure how much each data instance contributes in the total movement of the network parameters during training. We theoretically analyze and empirically demonstrate the effectiveness of the complexity-gap score in finding 'irregular or mislabeled' data instances, and also provide applications of the score in analyzing datasets and diagnosing training dynamics.
translated by 谷歌翻译
Data-centric AI has shed light on the significance of data within the machine learning (ML) pipeline. Acknowledging its importance, various research and policies are suggested by academia, industry, and government departments. Although the capability of utilizing existing data is essential, the capability to build a dataset has become more important than ever. In consideration of this trend, we propose a "Data Management Operation and Recipes" that will guide the industry regardless of the task or domain. In other words, this paper presents the concept of DMOps derived from real-world experience. By offering a baseline for building data, we want to help the industry streamline its data operation optimally.
translated by 谷歌翻译
According to the rapid development of drone technologies, drones are widely used in many applications including military domains. In this paper, a novel situation-aware DRL- based autonomous nonlinear drone mobility control algorithm in cyber-physical loitering munition applications. On the battlefield, the design of DRL-based autonomous control algorithm is not straightforward because real-world data gathering is generally not available. Therefore, the approach in this paper is that cyber-physical virtual environment is constructed with Unity environment. Based on the virtual cyber-physical battlefield scenarios, a DRL-based automated nonlinear drone mobility control algorithm can be designed, evaluated, and visualized. Moreover, many obstacles exist which is harmful for linear trajectory control in real-world battlefield scenarios. Thus, our proposed autonomous nonlinear drone mobility control algorithm utilizes situation-aware components those are implemented with a Raycast function in Unity virtual scenarios. Based on the gathered situation-aware information, the drone can autonomously and nonlinearly adjust its trajectory during flight. Therefore, this approach is obviously beneficial for avoiding obstacles in obstacle-deployed battlefields. Our visualization-based performance evaluation shows that the proposed algorithm is superior from the other linear mobility control algorithms.
translated by 谷歌翻译
Generative AI has matured to a point where large-scale models can generate text that seems indistinguishable from human-written text and remarkably photorealistic images. Automatically measuring how close the distribution of generated data is to the target real data distribution is a key step in diagnosing existing models and developing better models. We present MAUVE, a family of comparison measures between pairs of distributions such as those encountered in the generative modeling of text or images. These scores are statistical summaries of divergence frontiers capturing two types of errors in generative modeling. We explore four approaches to statistically estimate these scores: vector quantization, non-parametric estimation, classifier-based estimation, and parametric Gaussian approximations. We provide statistical bounds for the vector quantization approach. Empirically, we find that the proposed scores paired with a range of $f$-divergences and statistical estimation methods can quantify the gaps between the distributions of human-written text and those of modern neural language models by correlating with human judgments and identifying known properties of the generated texts. We conclude the paper by demonstrating its applications to other AI domains and discussing practical recommendations.
translated by 谷歌翻译
In robotics and computer vision communities, extensive studies have been widely conducted regarding surveillance tasks, including human detection, tracking, and motion recognition with a camera. Additionally, deep learning algorithms are widely utilized in the aforementioned tasks as in other computer vision tasks. Existing public datasets are insufficient to develop learning-based methods that handle various surveillance for outdoor and extreme situations such as harsh weather and low illuminance conditions. Therefore, we introduce a new large-scale outdoor surveillance dataset named eXtremely large-scale Multi-modAl Sensor dataset (X-MAS) containing more than 500,000 image pairs and the first-person view data annotated by well-trained annotators. Moreover, a single pair contains multi-modal data (e.g. an IR image, an RGB image, a thermal image, a depth image, and a LiDAR scan). This is the first large-scale first-person view outdoor multi-modal dataset focusing on surveillance tasks to the best of our knowledge. We present an overview of the proposed dataset with statistics and present methods of exploiting our dataset with deep learning-based algorithms. The latest information on the dataset and our study are available at https://github.com/lge-robot-navi, and the dataset will be available for download through a server.
translated by 谷歌翻译
Efficient exploration strategy is one of essential issues in cooperative multi-agent reinforcement learning (MARL) algorithms requiring complex coordination. In this study, we introduce a new exploration method with the strangeness that can be easily incorporated into any centralized training and decentralized execution (CTDE)-based MARL algorithms. The strangeness refers to the degree of unfamiliarity of the observations that an agent visits. In order to give the observation strangeness a global perspective, it is also augmented with the the degree of unfamiliarity of the visited entire state. The exploration bonus is obtained from the strangeness and the proposed exploration method is not much affected by stochastic transitions commonly observed in MARL tasks. To prevent a high exploration bonus from making the MARL training insensitive to extrinsic rewards, we also propose a separate action-value function trained by both extrinsic reward and exploration bonus, on which a behavioral policy to generate transitions is designed based. It makes the CTDE-based MARL algorithms more stable when they are used with an exploration method. Through a comparative evaluation in didactic examples and the StarCraft Multi-Agent Challenge, we show that the proposed exploration method achieves significant performance improvement in the CTDE-based MARL algorithms.
translated by 谷歌翻译
Graph neural networks (GNNs) have received remarkable success in link prediction (GNNLP) tasks. Existing efforts first predefine the subgraph for the whole dataset and then apply GNNs to encode edge representations by leveraging the neighborhood structure induced by the fixed subgraph. The prominence of GNNLP methods significantly relies on the adhoc subgraph. Since node connectivity in real-world graphs is complex, one shared subgraph is limited for all edges. Thus, the choices of subgraphs should be personalized to different edges. However, performing personalized subgraph selection is nontrivial since the potential selection space grows exponentially to the scale of edges. Besides, the inference edges are not available during training in link prediction scenarios, so the selection process needs to be inductive. To bridge the gap, we introduce a Personalized Subgraph Selector (PS2) as a plug-and-play framework to automatically, personally, and inductively identify optimal subgraphs for different edges when performing GNNLP. PS2 is instantiated as a bi-level optimization problem that can be efficiently solved differently. Coupling GNNLP models with PS2, we suggest a brand-new angle towards GNNLP training: by first identifying the optimal subgraphs for edges; and then focusing on training the inference model by using the sampled subgraphs. Comprehensive experiments endorse the effectiveness of our proposed method across various GNNLP backbones (GCN, GraphSage, NGCF, LightGCN, and SEAL) and diverse benchmarks (Planetoid, OGB, and Recommendation datasets). Our code is publicly available at \url{https://github.com/qiaoyu-tan/PS2}
translated by 谷歌翻译